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Abstract.  In this paper we formulate a mathematical model for initial stages of the impact of a rigid body onto a 
fluid in the presence of a cushioning fluid layer between them. Some numerical and analytical solutions are obtained 
in appropriate asymptotic limits, and numerical solutions are obtained to the full leading order problem. Finally, we 
compare our model with the work of other authors. 

1. Introduction 

Owing to the many practical applications of fluid impact problems, such as in ship dynamics 
and the wave loading of offshore structures, considerable mathematical and engineering 
effort has been expended obtaining approximate solutions to idealised fluid impact problems. 
A variety of methods have been employed, ranging from the entirely empirical to those 
employing the techniques of matched asymptotic expansions, but most ignore the presence 
of the air between the fluid and the impacting body and assume that the free surface is planar 
at the moment of impact. Of the latter type Cointe and Armand [3], Cointe [4] and Howison 
et al. [9] have analysed the special case when the deadrise angle (the angle between the 
tangent to the body and the horizontal) is small, i.e. when the impacting body is almost flat. 
Figure 1 shows a typical set of experimental pressure histories recorded during drop tests 
using a roughly parabolic body conducted by Nethercote et al. [14], and the corresponding 
theoretical predictions from an asymptotic theory based on small deadrise angle reproduced 
from Howison et al. [9]. Although the incompressibile theory over-predicts the size of the 
maximum pressure peak during the early stages, the theoretical predictions are in good 
agreement with the experimental results away from the keel. However, at the keel the 
incompressible theory predicts an infinite pressure whilst rapid pressure oscillations are 
observed experimentally. The explanation for these oscillations is the presence of a pocket of 
air trapped between the body and the fluid surface. It is the formation of this 'cushion' of air 
that we shall investigate in this paper and Fig. 2 shows the typical two-dimensional geometry 
we shall consider. In general, as the body approaches the fluid the free surface will be 
deformed by the pressure in the air, and will therefore not be planar at the moment of 
impact. 

Since the pioneering work by Von Kfirmfin [16] and Wagner [17] many authors have 
investigated the impact of a solid body onto a fluid. The presence of the unknown free 
surface of the fluid makes the problem a formidable non-linear one and, even for a rigid 
body impacting onto a quiescent half-space of inviscid and incompressible fluid without a 
cushioning air layer, no exact solutions are known. Despite this a great deal of progress has 
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Fig. 1. Comparison of experimental and theoretical pressure histories. Experimental data from Nethercote et al. 
[14] for a roughly parabolic body, 12 ft wide impacting at 20 ft/s. Theoretical predictions reproduced from Howison 
et al. [9] based on a small deadrise angle asymptotic theory. At  the keel the theory predicts an infinite pressure and 
the oscillations observed experimentally are probably due to air entrapment. 
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Fig. 2. Air cushioning geometry. 

been made, and a number of review articles, such as that by Moran [13] and more recently 
Greenhow [7] and Korobkin and Pukhnachov [10] have appeared. 

In the present work we concentrate on the problem of air cushioning during impact, which 
has been investigated analytically and numerically by a number of authors. 

Verhagen [15] used a simple one-dimensional model for the compressible flow of air in the 
narrowing gap between a finite length flat plate and a fluid surface, which he solved 
numerically. Motivated by the well-known theory applying to the steady flow of compressible 
fluid in converging and diverging channels, he assumed that as the air velocity reached the 
local sound speed in the throat formed between the body and the rising water surface, the 
flow would choke and that thereafter the air speed in the throat would be equal to the sound 
speed. The flow in this regime was calculated until the instant that the body first touched the 
water. Then a model for the trapped air pocket, in which it was assumed that the air pressure 
was a function of time only, was used to predict the pressure on the body. Despite 
incorporating a number of approximations, and introducing an arbitrary smoothing factor 
into the pressure distribution, the calculations were shown to be in good agreement with a 
set of experimental measurements made using a light-weight model. Lewison and Maclean 
[11] and Lewison [12] reported an extensive series of drop tests using flat plates, and 
compared the results with numerical solutions to an approximate one-dimensional model for 
the flow of the air which incorporated empirical assumptions about the pressure. The 
computed solutions were in quantitative agreement with the experiments, but displayed a 
marked sensitivity to initial conditions and overestimated the pressures by roughly a factor of 
two. A series of experiments with models of ship sections showed that adding flanges to the 
keel encouraged air entrapment and reduced the measured impact pressures. Apparently 
working without reference to the earlier work, Asryan [1] described two different models for 
the air layer beneath a flat plate. He first modelled the air as an inviscid and incompressible 
fluid. In order to make progress he assumed that the deflection of the free surface was small 
compared to the thickness of the air gap, and this approximation led to a single non-linear 
integral equation for the pressure in the air. The second approach was to model the air as a 
viscous and compressible fluid, and led to the equations of a viscous squeeze film and the 
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Reynolds equation for the flow in a channel with moving walls. Again, to make progress he 
assumed that the free surface deflection was small, and this led to a single quasi-linear partial 
differential equation for the pressure. Approximate solutions to these two equations were 
obtained numerically, and in both cases estimates for the time of first contact between the 
plate and the water were calculated. 

Driscoll and Lloyd [5] reported a series of drop tests using flat-bottomed wedges of varying 
keel size and deadrise angle, and made measurements of the speed and magnitude of the 
maximum pressure pulse. First contact was usually made at the edge of the keel, and for 
larger keels a smaller, inward travelling pressure pulse, caused as the pocket of trapped air 
collapsed, was recorded. Chuang [2] described a series of drop tests performed with 
flat-bottomed and small deadrise angle wedges. His experiments indicated that only the flat 
bottomed and 1 ° deadrise angle wedges entrapped a significant quantity of air, and he 
derived a sequence of empirical corrections to Wagner's [17] simple formula for the 
maximum pressure in the absence of air. Hagiwara and Yuhara [8] conducted experiments to 
measure the impact forces and resulting stresses on a number of one third scale ship bow 
models. They too only observed the effects of air entrapment for wedge angles less than 
about 3 °. Eroshin et al. [6] reported a series of drop test experiments onto compressible 
fluids using flat bodies in the presence of various types of cushioning fluid layers, and found 
them to be in good agreement with numerical solutions to a simple one-dimensional model. 

2. Problem formulation 

The most likely explanation for the pressure oscillations measured on the keel of a roughly 
parabolic body during a fluid impact, shown in Fig. 1, is that the pressure in the air between 
the solid and the liquid is not negligible, and so the free surface is deformed before the 
impact occurs and a cushioning pocket of air is trapped. In order to discuss this mechanism, 
we derive a model which incorporates the air flow before an impact. 

We consider the impact of a two-dimensional, rigid, symmetric body onto a quiescent 
half-space of inviscid and incompressible fluid, and take cartesian axes (x, y) with the y-axis 
vertically upwards and the x-axis along the undisturbed free surface. Working in dimensional 
variables, the position of the body is denoted by y = f ( x )  + a(t) ,  where the body has profile 
y = f ( x )  with f ( 0 ) =  0, and a(t)  is the distance of the body at x = 0 from the level of the 
undisturbed free surface. Initially air fills the space between the body and the undisturbed 
water surface, and we neglect the effects of gravity and surface tension at the free surface. 
We shall model the air as an inviscid and incompressible fluid, but note that the com- 
pressibility of the air will become significant whenever the speed of the air becomes 
comparable with the local sound speed, which is most likely to occur as the air-gap narrows 
just before the body first touches the water surface. For simplicity we have referred to the 
two fluids in the model as air and water, but obviously the model is more general, and can be 
applied to any two immiscible, inviscid and incompressible fluids. 

Since the flows in the air and in the water are both initially irrotational, Kelvin's theorem 
applies to them, and so they will remain irrotational throughout the motion and we can 
define appropriate velocity potentials, (~I in the air and ~b 2 in the water. It is sometimes more 
convenient to work directly with the x- and y-components of velocity, and so we denote 
these by ui(x,  y,  t) = Oqbi/ax and vi(x,  y ,  t) = aqb~/ay respectively, where i = 1 for quantities 
in the air and i = 2 for those in the water. The governing equations in both fluids are Euler's 
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equations; 

OU i OV i 
+ - -  = o ,  O) 

Ox Oy 

Ou~ Ou~ Ou~ 10p i  
+ u i + vi = , (2) Ot ~ Oy Pi O x  

OU i O0 i 3v~ 1 Op~ 
- -  + u i + v i = , ( 3 )  
O t -~x ~y Pi Or 

for i = 1, 2. Extending our notation, p~(x, y, t), P2(X, y, t) are the pressure in the air and the 
water and p~, P2 denote the density of the air and of the water respectively. 

At the surface of the body we require continuity of normal velocity between the body and 
the air, 

ul f ' (x  ) -  V 1 = -a'( t)  on y : f ( x )  + a(t). (4) 

At the free boundary between the air and the water, denoted by y = h(x, t), the kinematic 
condition applied to each fluid gives 

oh 3h oh oh 
--Ot + u l - ~ x -  v l = 0  and - ~ - + u  2 ~ - v  2 = 0  on y = h ( x , t ) .  (5) 

In the absence of gravity and surface tension, the air and water pressures must be equal at 
the free surface, and so from Bernoulli's equation we have 

{ a ~  ~ ) ) p l~ - f f  + ~ Iv,/,11 ~ I ~  I = p2\-g? + 5 Iv6212 on y = h(x, t). (6) 

Appropriate initial conditions are that the air and the water are at rest and that the free 
surface is planar. The problem has the far-field condition 

1~7(~i1""~0 as (X2"+-y2) 1/2"--~°° for i = 1 , 2 .  (7) 

3.  N o n - d i m e n s i o n a l i z a t i o n  

First we non-dimensionalize the problem by scaling the variables with the typical horizontal 
length, l, and typical air-gap thickness, A. On substituting the new scaled variables into the 
equations and boundary conditions, we will find that two non-dimensional groups of 
parameters arise naturally. These are the aspect ratio of the gap, which we denote by 

A 

l '  

and the ratio of the density of air to the density of water, which we denote by 

8 =  P1~[10-3 . 
P2 
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The experiments of Lewison [12] suggest that the water surface only responds to the 
approaching body when it is very close to it, and so we will investigate solutions to our model 
when both these parameters are small, viz. e ~ 1 and 6 ~ 1. 

We scale the vertical velocity of the air with V, a typical vertical speed of the body, and 
from the mass conservation condition (1) the typical horizontal speed of the air is V/e. The 
free surface evaluation scales with 6A, and from the Euler equations (2, 3), we see that the 
pressure in the air is of order plV2/e 2. The length scale in the water is l, but the velocity 
scale, denoted by U, has to be determined. The scale of the water pressure is obtained by 
balancing the pressure term in the Euler equation (2) with either the inertia term, which is of 
order US~l, or the unsteady term, which is of order UV/I. Choosing the former gives a 
pressure scale of p2U 2. Since the pressure is continuous across the free boundary, the 
pressures in the air and in the water must be comparable, and this determines U to be 
61/2V/e. However, the ratio of the inertia term to the unsteady term is now ~1/2~1,  
meaning that the unsteady term dominates the right hand side of the equation, which 
contradicts our original choice. If instead we balance the pressure term with the unsteady 
term then the pressure scale is P2 UV/e, and matching the pressures across the free boundary 
determines the appropriate value of U to be V6/e, which is consistent. 

3.1. The water problem 

In the water problem the non-dimensionalization takes the form 

x* = x y* Y t* Vt 
l '  l '  l ' 

with 

, U2 , V2 
U2 U ' 02  : U ' 

and 

*[x* 1 2, , Y*, t*) = ~ ~b2(x, y, t ) ,  

2 

p*tX* 2t , Y*, t*)= ~ p2(x, y, t ) ,  
1 

h*(x*, t*) = ~-~ h(x, t) .  

Dropping the starred notation for dimensionless quantities, the governing equations in the 
water are 

OU 2 OV 2 
- -  + = o ,  ( 8 )  
Ox Oy 

OU2 [ O U 2  OU2] OP2 
- -  + 6 u 2 Oy 3 Ox at -~x + vz = ' (9) 

OVa [ Ov2 OVz] OP2 (10) 
+ 6 u 2 Oy J Oy at -~x + v~ = , 

and the statement that the flow is irrotational, V × u 2 ~ 0 ,  takes the form 

Ou2 Ov2 - O. (11) 
Oy Ox 
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The boundary condition on the free surface is 

Oh Oh 
--+6u2 - v 2 = O  on y = 6 h ( x , t )  
c3t -~x 

(12) 

and from Bernoulli's equation the pressure in the water is 

P2= I_ Ot + 7 (uz2 + v~)'t2 " (13) 

The far-field condition is 

Iv 21- 0 as (x2+y2)l/2---~oo. (14) 

3.2. The air problem 

In the air problem the non-dimensionalization takes the form 

x* x y * -  Y t* Vt 
1 '  h '  l 

with 

, UlA , vi 1 
u,  - Vl ' v, = -~ , 6~(x*, y*, t*) = ~-~ 6,(x, y, t ) ,  

and 

p~(x*,  y*, t*) = e2 ~h piV2 p l (x ,  y, t) , h*(x*, t*) = h(x, t) , 

1 1 
f * ( x * )  = -£ f ( x ) ,  a*(t*) = -~ a( t ) .  

Dropping the starred notation for dimensionless quantities, the air problem is given by the 
equations 

19/4,1 OV 1 
+ = O, (15) 

Ox Oy 

c3U 1 O u  1 _ O P l  
Oul + u  I + v  1 -  , (16) 
Ot -~x by Ox 

ov, OPl (17) 
e l _ ~  + u~ Tx + v~ Oy i =  oy ' 

and the statement that the flow is irrotational, V × u 1 ~-0, takes the form 

OUl _ e 2 cgvi 
OX ~ y  = O. (is) 

The boundary conditions on the body and the free surface are 

U l f ' ( x  ) - -  I )  1 = - a ' ( t )  on y =f(x)  + a( t ) ,  (19) 



272 S.K.  Wilson 

6_ Oh + u l  - v ~ = 0  on Y= e 
8 

and from Bernoulli's equation the pressure in the air is 

--[L 0¢10t 21 2 Vl)2xl'2] p , =  + ( u ~ + e  j .  (21) 

The far-field condition is 

]V¢ll'-"->O as (x 2 q - y 2 )  1 /2 ' ' ->°0  . (22) 

4. The leading order water problem 

If we seek a solution for ¢2 (and hence/l  2 and v2) as an asymptotic series in t~, in the form 

¢2 = (¢2)0 "1- 5(¢2)1 "1- O(a2) , 

then, dropping the clumsy subscript notation and dealing with leading order quantities unless 
otherwise stated, the leading order problem is given by the acoustic equations; 

0U 2 0V 2 - - +  = 0 ,  (23) 
Ox Oy 

OU2 = - -  OP2 (24) 
Ot Ox ' 

002 OP2 - (25) 
Ot Oy ' 

with the condition that the flow is irrotational 

Ou 2 Ov2 
= 0 .  (26) 

Oy Ox 

The boundary conditions on the free surface are 

Oh 
Ot 02' Pl = P2 on y 0. (27) 

If we regard h(x,  t) as being determined from the air problem then it is convenient to treat 
the problem as a boundary value problem for the velocity potential. Since, to leading order, 

0¢  2 _ Oh 
on y = 0 ,  

Oy Ot 

the solution for 0¢2/0y,  harmonic in y ~< 0 and satisfying the boundary condition and the 
far-field condition (14) is obtained by using the appropriate Green's function; 

04'2 (x, y, t )=  y f_+~ Oh d~ (28) a---~ ¢r -~- (so' t) (~ _ x) 2 + y2 • 



Hence,  the velocity potential ~b 2 is given by 

i f  -° ~b2(x, y, t) = ~ ~ - - -  

Furthermore,  

84) z (x, 0, t ) =  1 f ~ :  Oh d~_x 
ox -g T i  ( ~' t) 
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at (~' t) logl(¢ - x) 2 + y21 d ~ .  

273 

(29) 

_ _ _ _   30) 

where Y((.) denotes a Hilbert Transform. From equation (24) we deduce that on y = 0 

OP2 (x' O' t) = _~ ~ (  Oh , 

and therefore the surface pressure is determined in terms of the free surface elevation to be 

Op2 ( x , O , t ) = - X (  Ozh~ (31) 
Ox \ Ot 2 ] " 

5. The leading order air problem 

The solution of the air problem is dependent on the ratio 6/e, and so we introduce the new 
parameter,  O, defined by 

6 
1~ = -- o 

E 

If we seek solutions for u~ and v~ as an asymptotic series in e 2, in the form 

U 1 = ( U l )  0 + E 2 ( U l ) I  + 0 ( / ~ 4 )  , V 1 = ( V l )  0 + ~ 2 ( V l )  1 q'- 0 ( ~ 4 )  , 

and again drop the subscripts, then the leading order problem is given by the equations 

Ou 1 OV 1 
- - +  = 0 ,  
Ox Oy 

OU 1 OU 1 OU 1 - -  O P l  
" + ~I  + e l  at -~x Oy Ox 

0 = OpI 
Oy ' 

with the statement that the flow is irrotational 

OUl  = 0 .  
0y 

The boundary condition on the body is 

(32) 

(33) 

(34) 

(35) 

u l f ' ( x  ) -  v 1 = -a ' ( t )  on y = f ( x )  + a(t), (36) 
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and those on the free surface are 

O - ~ + u  l~xx - v l = 0 '  P I=P2  on y = O h ( x , t ) .  (37) 

The geometry of the leading order air problem is shown in Fig. 3. From equation (35), we 
deduce that ul is a function of x and t only, and so we can integrate equation (32) with 
respect to y to obtain 

Vl = Ox y + o~(x, t) , 

where a(x, t) is an unknown function of x and t. Substituting into the boundary conditions 
(36) and (37a) and eliminating a(x, t) gives 

0 
O__Ot {Oh(x, t) - a(t) - f(x)} + ~xx [{Oh(x, t) - a(t) - f(x)}ul] = 0. (38) 

Since Oh(x, t ) -  a ( t ) - f ( x )  is the thickness of the air-gap, this is just a statement of 
conservation of mass in the air. From equation (33) 

Opl Ou~ Oul 
= - -  + /~1  Ox Ot Ox 

and so we deduce that the air pressure is also a function of x and t only. Using equation (31) 
we can eliminate the pressure and obtain an integral equation relating h(x, t) and Ul(X, t), 
namely, 

0Ul 0u, 
\ Ot 2 / =  Ot + ul Ox 

(39) 

Equations (38) and (39) are a coupled pair of integral and differential equations for the 
leading order free surface elevation, h(x, t), and the leading order horizontal air velocity, 
ul(x, t). Once they have been solved, the solution in the water can be evaluated by 
substituting h(x, t) into equation (31) and the problem therefore reduces to solving this 
coupled pair of equations. 

y 

0h(x, t) - f(x) - a(t) 

Fig. 3. Geometry of the leading order air problem. 
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The coupled equations (38) and (39) are analytically intractable, but some progress can be 
made by seeking solutions in appropriate asymptotic limits before resorting to numerical 
calculations. For clarity, we drop the subscript one and hereafter denote the leading order 
horizontal air velocity simply by u(x, t). 

6.1. Small time asymptotic behaviour 

We investigate the small time behaviour of the evolution from an initial state given by 
u(x, T) = Uo(x), h(x, T) = Ho(x ), a(T) = A o at t = T, without restriction on O. We choose 
the origin of time to be at T and expand a(t) as a power series in time t for t ~ 1 in the form 

a(t) = k Ant" ,  
n = 0  

where the A n for n = 0, 1, 2 . . . .  are constants, and seek solutions for h(x, t) and u(x, t) also 
as power series in t for t ~ 1 in the forms 

u(x, t )= ~ U~(x)t n , h(x, t )= ~ nn(x)t  n , 
n = 0  . = 0  

where the functions U,(x) and Hn(x ) are to be determined. Substituting these expressions 
into equation (38) and equating coefficients of t, we obtain the leading order terms 

0 
O(1) OH l(x) - A 1 + "~x [{ OH°(x) - (A° + f(x))} U0(x)] = 0 ,  (40a) 

O 
O(t) 2(OHz(x) - Az) + ~xx [{OH,(x) - A,}Uo(x)] 

+ O--'-x [{OH°(x) - (A° + f(x))} U,(xl] = 0 ,  (40b) 

O 
O(t2) 6(OH3(x) - A31 + ~x [{OH,(x) - A1}U,(x)] 

O 
+ ~ [{0Uo(X) - ( a  o + f ( x ) ) } G ( x  ) + {OH2(x ) - A2} Cro(X)] = 0 ,  (40c) 

and from equation (39) the leading order terms 

O(1) Y((2H2(x)) = Ul(x ) + Uo(x ) OU° (41a) 
Ox ' 

O 
O(t) YC(6H3(x)) = 2U2(x) + ~xx (Uo(x)G(x)).  (41b) 

We note that equation (40a) is a single equation involving three unknown quantities, H0(x), 
Hl(x ) and Uo(x ). However,  two of these may be determined from initial conditions at t = 0, 
and taking the next order terms from equations (40) and (41) introduces two equations for 
two new unknowns at each order. In this way all the terms in the expansions of u(x, t) and 
h(x, t) can, in principle, be calculated. 
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Case (a). If we impose the initial conditions 

h ( x , O ) = O  and u ( x , O ) = O ,  

then Ho(x ) -~ Uo(x ) =- O, and from equation (404) 

A1 
H l(x) - O " (42) 

Substituting these expressions into equation (41a) and inverting the Hilbert transform gives 

1 
H2(x ) = - ~ Yg(UI). (43) 

Integrating equation (40b) once with respect to x and imposing the symmetry condition 
u(0, t) = 0 for all t, then yields a singular integral equation for U~ (x), the leading order term 
in the expansion of the velocity, namely 

o 1 f + ~  x 
U,(x)  = g(x) + Ao + f ( x )  7r J -=  Ul(~:) l°g 1 - ~ d~:, (44) 

where the function g(x) is given by 

2 A z x  
g ( x ) -  A o + Y ( x  ) . (45) 

Case (b). If we impose the initial conditions 

Oh 
h ( x , O ) = O  and ~ - ( x ,  0 ) = 0 ,  

then Ho(x ) =-H~(x)=-O. Integrating equation (40a) gives a simple expression for the leading 
order velocity, viz. 

A1 
U°(x) = A o + f (x )  ' (46) 

and equation (40b) yields a formula for the first non-zero term in the free surface elevation, 

1[ 1 H2(x) = 2-0 2A2 + ~x [{'40 +f(x ) }Ul (X)  + A1U°(x)] " (47) 

Substituting these expressions into equation (41a), inverting the Hilbert transform and 
integrating with respect to x yields a singular integral equation for U l(x), 

f + = U l ( ~ ) l o g  x 0 1 1 - ~ dE (48) U,(x) = g(x) + A o  +f(x)  ~ -~ 

where the function g(x) is given by 

g ( x )  - 
A~x 2A2x 

(A  o + f (x ) )  z A o + f (x )  

f+]  {Ao 
+ A o + f ( x )  7r (A ° + f(~:))3 j ~ • 

(49) 
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Both singular integral equations (44) and (48) can, with care, be solved numerically by a 
method of successive approximations. An initial guess for U l(x) is substituted into the right 
hand side of the equation, and the resulting integration performed numerically. The result is 
a revised approximation for U~(x), and this procedure is repeated until the desired 
convergence is obtained. 

Figure 4 shows the first term in the expansion of the horizontal air velocity and the two 
leading order non-zero terms in the expansion of the free surface elevation for a body with 
profile y = 3x 6, subject to the initial conditions (a) with A 0 = 1, A~ = - 1 / 2 ,  A:  = - 1 / 2  and 
a9 = 1. Figure 5 shows the first two terms in the expansion of h(x, t) and the first term in the 
expansion of u(x, t) for the same body shape and parameter values with initial conditions 
(b). Notice how in both cases the free surface is forced down under the centre of the body 
and up at its sides, potentially causing a cushion of air to be caught between the body and 
the water. Care should be taken in interpreting these results since, of course, they are only a 
good approximation to the behaviour of the solution during the initial stages of the motion 
when t ~ 1. 
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t e r m  of  the  h o r i z o n t a l  a i r  ve loc i ty  for a b o d y  wi th  prof i le  y = 3x  6, sub jec t  to the  in i t ia l  cond i t i ons  (a). T h e  func t ion  
a(t) is such tha t  A 0 = 1, A 1 = - 1 / 2 ,  A 2 = - 1 / 2  and  0 = 1. 
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Fig. 5. The coefficients of the first term in the small time expansion of the free surface elevation and the first two 
terms of the horizontal air velocity for a body with profile y = 3 x  6, subject to the initial conditions (b). The function 
a(t) is such that A 0 = 1, A 1 = -1 /2 ,  A 2 = - 1 / 2  and O = 1. 

6.2. W e a k  coupl ing asymptot ic  behaviour  

T h e  pa i r  o f  c o u p l e d  e q u a t i o n s  (38) and  (39) can  also be  i nves t i ga t ed  a s y m p t o t i c a l l y  when  

"0 ~ 1, c o r r e s p o n d i n g  to the  case  when  the  aspec t  ra t io  of  the  a i r -gap  is la rge  c o m p a r e d  to  

t he  dens i t y  r a t io ,  and  so the  coup l ing  b e t w e e n  the  air  and  the  w a t e r  p r o b l e m s  is weak .  W e  

seek  f o r m a l  so lu t ions  for  u(x ,  t) and  h(x ,  t) as p o w e r  ser ies  in O in the  fo rm 

u = U 0 + O U  1 + 02U2 + 0 ( 0 3 ) ,  h = H o + "oH 1 + "02H 2 + 0('03). 

Subs t i t u t i ng  in to  e q u a t i o n  (38) and  equa t ing  coeff ic ients  of  "0, we ob t a in  the  l ead ing  o r d e r  

t e r m s  
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a 0 
O(1) -~ (a(t) + f(x)) + -~x [(a(t) + f(x)) Uo(x, t)] = 0 ,  (50a) 

aHo (x, t) + o 0 ( 0 )  Ot ~xx [H°(x' t) Uo(x, t) - (a(t) + f(x)) U l (x, t)] = 0 ,  (50b) 

and from equation (39) 

[02Ho \ OU o dU O 
0(1)  Y ( k - - ~ )  = - - ~  (x, t) + Uo(x, t) ~ (x, t ) ,  (51a) 

c3 2H 1 '~ cq U 1 0 
O(O) Y( ---~-] = - - ~  (x, t) + -~x (U°(x' t)U,(x, t)). (51b) 

Integrating equation (50a) once with respect to x and using the symmetry condition 
u(O, t) = 0 for all t gives an expression for the leading order velocity, 

a'(t)x (52) 
Uo(X , t) = a(t) + f(x) " 

Ho(x, t) can then be calculated by inverting the Hilbert transform in equation (51a), yielding 

02Ho_lf) [ , 
Ot 2 ~ (a(t) ..~ f ( ~ ) ) 2  {(a(t) + f((z))a"(t) - a'(t) 2} 

a '(t)2¢+ f(~))3 ] dE 
- ( a ( t )  {a(t) + f ( ¢ ) -  Cf'(~)} ~--x (53) 

We need to impose two initial conditions on Ho(x, t), and for simplicity we choose 

Oh 
h(x ,O)=O and ~ - ( x ,  0 ) = 0  

at t = 0. In general, equation (53) must be evaluated numerically. We can, however, obtain a 
closed form solution in the special case when the body shape is a finite flat plate, so that 
f(x)=-O for Ix[~<l.  From equation (52) we obtain U o ( x , t ) = - a ' ( t ) x / a ( t ) ,  and hence 
Vo(x, t) = a'(t)y/a(t) in Ixl ~< 1. If we insist that there is zero pressure at the ends of the 
air-gap, Ix[ = 1, then the corresponding pressure distribution on y = 0 is 

eo(x, t) = c"( t ) (1-  x 2) for Ixl ~< 1,  (54) 

where 

fot fotl ¢ 2 n 2a (t2) - a(tz)a (tz) 
C(t)= 2a( t--~ dt2 dr1 ' 

as shown in Fig. 6. Evaluating the integral in equation (53) gives an explicit formula for the 
leading order shape of the free surface, namely 

H°(x ' t )=-2c(t)¢r  [ 2 + x l o g  ~ l - x  ] ,  (55) 



280 S.K.  Wilson 

no(~,t) 

v 

Po(x, o, t) ,~ 
/ 

-I +1 
r 

x 

Fig. 6. Leading order pressure and free surface elevation for a fiat plate of finite length in the limiting case O = 0. 

which is also plotted in Fig. 6. Evidently H0(x, t)---~ oo as [x[ ~ 1, and the discontinuity in the 
pressure gradient at the edges of the plate gives rise to an infinite free surface elevation at 
Ix[ = 1. This limiting case (the weak coupling means that the water surface has been treated 
as a flat, rigid boundary in the air problem) has appeared in the papers by Verhagen [15], 
Lewison [12] and Asryan [1] and is the crudest possible model of air entrapment. 

7. Numerical  calculations 

We now turn our attention to a numerical investigation of equations (38) and (39) without 
restriction on O or t. For simplicity we impose the initial conditions 

Oh 
h ( x , O ) = O  and - ~ ( x ,  0 ) = 0  

at t -- 0. Integrating equation (38) with respect to x gives an expression for u(x, t) in terms of 
the unknown function h(x,  t), 

°Ifo 1 u(x, t) = - Oh(x,  t) - (a(t) + f (x ) )  Ot {Oh(~ ,  t) - (a(t) + f(~:))} d~ , 

which can be written more conveniently as 

u(x, t) = Oh(x,  t) - (a(t) + f (x ) )  a ' ( t )x  - 0 - ~  (x, t) , (56) 

where 

F(x,  t) = fo x h( ~, t) d~ . 

The free surface elevation is now determined from equation (39). Inverting the Hilbert 
transform gives 

Ot2 = - - ~  - ~ ( ~ ' t ) + u ( ~ ' t ) - ~ x  ( ~ ' t )  ~ - - - x"  (57) 

The numerical procedure employed to solve equations (56) and (57) is again an iterative 
one, beginning with an initial guess for the free surface elevation h(x, t), which is expressed 
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as a sequence of values at n equally spaced points, xl, x2, • • •, x, .  Using these values the 
function F(x, t) can be evaluated at each of the points x i for i = 1, 2 , . . . ,  n by using one of 
the standard techniques for numerical quadrature. Next, the corresponding values of u(xi, t) 
are obtained by using equation (56) and performing a numerical differentiation with respect 
to t, resulting in the values of the first iteration for the horizontal air velocity. These values 
are then used to evaluate the singular integral in equation (57). Particular care is taken to 
split up the range of integration in order to remove the weak logarithmic singularity at the 
point ~ --- x; the contribution from the neighbourhood of that point being approximated by 
expanding the integrand in a Taylor series and evaluating the resulting Cauchy Principal 
Value integral analytically. Finally, the result of this quadrature is integrated twice with 
respect to time by making use of the well-known formula, 

x 10 -2 
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F i g .  7. C o m p u t e d  free surface elevation and horizontal  air velocity at t ime t = 0.0, 0.2, 0.4, 0.6 and 0.8 for a wedge 
shaped  body y = 2Ix] moving with constant  speed,  with a ( t )  = 1 - t and O = 0.1. The  vertical scale is exaggerated 
and  so the  body does not  appear.  
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f[fo" g(t")dt"dt'= f[ ( t -  ~:)g(~:) d~: , 

and the next iteration for h ( x ,  t)  obtained. The process is repeated until a suitable criterion 
for convergence is satisfied. 

Figure 7 shows the computed values of the horizontal air velocity and free surface 
elevation for a wedge shaped body, y = 21x[, approaching the water with constant speed at 
various values of the non-dimensional time t, with the function a ( t )  defined so that 
a ( t )  = 1 - t. Figures 8 and 9 show the same quantities for bodies with profiles y = 3x 2 and 
y = 3 x  6 respectively. In all the calculations O = 0.1. 
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Fig. 8. Computed free surface elevation and horizontal air velocity at time t = 0 .0 ,  0 .2 ,  0 .4 ,  0 . 6 ,  0 .8  a n d  1 .0  f o r  a 

parabolic b o d y  y = 3 x  2 moving with constant speed, with a(t) = 1 - t a n d  O = 0 .1 .  T h e  position of the body is also 
shown but, because of the exaggerated vertical scale, only appears at t = 1.0.  
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Fig. 9. Computed free surface elevation and horizontal air velocity at time t = 0.0, 0.2, 0.4, 0.6 and 0.8 for a body 
with profile y = 3x 6 moving with constant speed, with a(t) = 1 - t and ~ = 0.1. The vertical scale is exaggerated and 
so the body does not appear. 

We observe  that  the 'b lunter '  bodies,  like the y = 3x ° profile, tend to carry a body of air 
ahead  of them as they descend. This depresses the free surface ahead of them while causing 
it to rise at their edges, with the consequence that they will tend to trap a pocket  of air 
be tween  themselves  and the water  at the momen t  of impact.  In contrast  the ' sharper '  bodies,  
like the wedge,  allow the air to escape more  efficiently and, while still depressing the free 
surface ahead of them,  seem unlikely to t rap a significant cushion of air. These  calculations 
can be continued until the water  surface and the body touch for the first t ime, but as the 
air-gap narrows the horizontal  air velocity, given by equat ion (56), tends to infinity. This 
unbounded  growth is physically unacceptable  since when the air speed becomes  comparable  
with the sound seed in the air the neglected effect of air compressibili ty becomes  significant, 
invalidating the incompressible model  and, of course, leads to numerical  problems too. 
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8. Comparison with earlier work 

The present work justifies most of the approximations made by Verhagen [15], Lewison [12] 
and Asryan [1] during the initial stages of the motion, when compressibility effects in the air 
are negligible. However, no justification has been found for the first two authors' modelling 
of the effect of the compressibility of the air, for which they employed the ideas of classical 
steady nozzle flow to an intrinsically unsteady problem, and their results must therefore be 
treated with caution. Asryan's [1] calculations apply only to the earliest stages of the motion 
before the deflection of the free surface becomes comparable with the thickness of the air 
gap, and therefore his estimates for the time of impact are unlikely to be accurate. 

Direct experimental observations of the thin air gap and the free surface during the impact 
are difficult, and the author is unaware of any quantitative experimental data for the air 
velocity and free surface deformation. However, the pressure histories presented by Driscoll 
and Lloyd [5] for fiat-bottomed wedges show that the first contact between the body and the 
water is usually made at the junction of the keel and the sloping face of the wedge, 
suggesting that even the simplest model, leading to equations (54) and (55), describes the 
basic process. 

9. Conclusions and further work 

The present incompressible leading order theory for the air layer between a moving solid 
body and a free surface of a fluid predicts that some shapes of body may trap a pocket of air 
as they impact onto the free surface. However, no satisfactory method for predicting the size 
of the entrapped air bubble has been obtained. 

The model has a number of limitations. Most seriously, it is limited to incompressible 'air' 
and so is invalid when the air speed in the narrowing gap approaches the sound speed, and 
hence cannot be used to predict the size of the entrapped air pocket. The models presented 
by other authors which attempt to represent the effects of compressibility are unsatisfactory, 
and a compressible version of the present theory is required. Unfortunately, the com- 
pressibility effects occur just as the free surface effects are most significant and the problem 
is therefore a difficult one. One approach would be to attempt a direct numerical solution of 
the full Euler equations in the air and the water, in which case the present results form a 
simple check on the early stages of the calculation before compressibility becomes signifi- 
cant. In addition, as the gap narrows the experiments indicate that the large horizontal air 
velocities can cause the peaks in the free surface to break up into spray. The phenomenon 
may have a significant effect on the size of the trapped air pocket and needs to be 
investigated. 

We have limited the present discussion to the case of a body approaching a free surface, 
but the same model is obviously still applicable if the body is moving away. Although of less 
practical importance, this situation should also be investigated. 

Finally, we note that after impact has occurred the experimental results of Verhagen [15] 
and Lewison [12] indicate that the trapped air cushion breaks up into bubbles at its edges, 
which expand into the centre of the pocket at a speed comparable to the sound speed. It may 
be possible to model these pressure oscillations of the trapped air bubble using the classical 
theory of shocks in one-dimensional unsteady gas dynamics. 
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